

HKDSE MOCK EXAMINATION 2020

Physics

Marking scheme

Marking Scheme

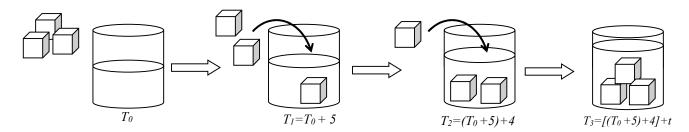
Paper I Section A

Question No.	Key	Question No.	Key
1.	В	26.	В
2.	С	27.	D
3.	D	28.	В
4.	В	29.	D
5.	В	30.	В
6.	D	31.	А
7.	В	32.	В
8.	В	33.	D
9.	В		
10.	А		
11.	С		
12.	А		
13	А		
14.	С		
15.	В		
16.	D		
17.	С		
18.	А		
19.	А		
20.	А		
21.	А		
22.	D		
23.	С		
24.	А		
25.	*		

Note: Figures in brackets indicate the percentages of candidates choosing the correct answers.

* These items are deleted

1. B


Temperature difference $\Delta T = T_f - T_i$

$$= (20 + 273) - (-252.8 + 273)$$
$$= (293) - (20.2)$$
$$= 272.8 K$$

2.	С			
	<i>.</i>	(1)	The change of the length/height of the liquid inside the glass tube will be more if the volume of its bulb is	
	ľ	(1)	increased.	
	\checkmark	(2)	The change of the length/height of the liquid inside the glass tube will be more if narrower bore is used.	
		~	\times (3) Constriction is used for keeping the maximum reading of the there	Constriction is used for keeping the maximum reading of the thermometer by causing the mercury column to
		(3)	break under tension, leaving a vacuum between the bottom of the column and that in the bulb	

3. D

D		
×	(1)	According to $PV = nRT$ and $\overline{K.E.} = \frac{3}{2} \frac{R}{N_A} T$ $\frac{1}{2} m\overline{c^2} = \frac{3}{2} \frac{R}{N_A} (\frac{PV}{nR})$ $c_{r.n.s.}^2 = \frac{3PV}{mN}$ (where N is total number of gas molecules) $\therefore c_{r.n.s.} = \sqrt{\frac{3PV}{M}}$ (where M is the mass of gas) i.e. $c_{r.n.s.} \propto \sqrt{V}$ Therefore, $\frac{c_1}{c_2} = \frac{\sqrt{V_1}}{\sqrt{V_2}} = \frac{\sqrt{V}}{\sqrt{2V}} \implies c_2 = \frac{\sqrt{2}c_1}{2}$
×	(2)	$\frac{c_2}{\sqrt{V_2}} \sqrt{2V} = \frac{1}{\sqrt{2V}}$ $V \propto L^3 \text{ and } c = \frac{L}{t} \Rightarrow f = \frac{1}{T} = \frac{c}{L} \Rightarrow f \propto \frac{\sqrt{V}}{\sqrt[3]{V}} = V^{\frac{1}{6}}$ or alternative method; $P = \frac{F}{A} \Rightarrow P = \frac{\frac{mv - mu}{t}}{A} \Rightarrow PA = \frac{m(c) - m(-c)}{t} \Rightarrow PL^2 \propto \frac{2mc}{t}$ $\frac{P(\sqrt[3]{V})^2}{2mc} \propto \frac{1}{t} \qquad (\because V \propto L^3)$ $\frac{1}{t} \propto \frac{P(\sqrt[3]{V})^2}{2m\sqrt{V}} \qquad (\because c_{r.n.s.} = \sqrt{\frac{3PV}{M}} \Rightarrow c_{r.n.s.} \propto \sqrt{V})$ $f \propto V^{\frac{1}{6}}$
\checkmark	(3)	The root-mean-square speed of molecule increases since gas is heated (temperature of the gas increases).

Let the initial temperature of water be T_0 ;

the temperature difference between the cubes and the water be δ . Then the initial temperature of the cubes should be $T_0+\delta$

When the first cube is added:

$$E_{release} = E_{absorb}$$

$$C_{cube}[(T_0+\delta)-T_1] = C_{water}(T_1-T_0)$$

$$C_{cube}[(T_0+\delta)-(T_0+5)] = C_{water}[(T_0+5)-T_0]$$

$$C_{cube}(\delta-5) = C_{water}(5) \qquad \dots (1)$$

When the second cube is added:

$$E_{release} = E_{absorb}$$

$$C_{cube}[(T_0+\delta)-T_2] = C_{water}(T_2-T_1)+C_{cube}(T_2-T_1)$$

$$C_{cube}[(T_0+\delta)-(T_0+9)] = (C_{water}+C_{cube})[(T_0+9)-(T_0+5)]$$

$$C_{cube}(\delta-9) = (C_{water}+C_{cube})(4)$$

$$C_{cube}(\delta-13) = C_{water}(4) \qquad \dots (2)$$

Solving (1) and (2), we have

$$\frac{C_{cube}(\delta-5)}{C_{cube}(\delta-13)} = \frac{C_{water}(5)}{C_{water}(4)}$$

$$4(\delta-5) = 5(\delta-13)$$

$$\delta = 45^{\circ}C$$

When the third cube is added:

$$E_{release} = E_{absorb}$$

$$C_{cube}[(T_0+\delta)-T_3] = C_{water}(T_3-T_2)+2C_{cube}(T_3-T_2)$$

$$C_{cube}[(T_0+45)-(T_0+9+t)] = (C_{water}+2C_{cube})[(T_0+9+t)-(T_0+9)]$$

$$C_{cube}(36-t) = (C_{water}+2C_{cube})(t)$$

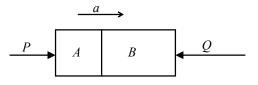
$$C_{cube}(36-3t) = C_{water}(t) \qquad \dots (3)$$

Solving (1) and (3), we have

$$\frac{C_{cube}(45-5)}{C_{cube}(36-3t)} = \frac{C_{water}(5)}{C_{water}(t)}$$

$$40(t) = 5(36-3t)$$

$$55t = 180$$


$$t = \underline{3.3^{\circ}C}$$

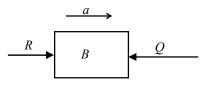
Let the distance of the car travelled in one lap be d

$$\overline{c} = \frac{d_1 + d_2 + d_3}{t_1 + t_2 + t_3} \implies \overline{c} = \frac{d + d + d}{\frac{d}{c_1} + \frac{d}{c_2} + \frac{d}{c_3}}$$
$$\implies \overline{c} = \frac{3}{\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3}}$$
$$\implies 77 = \frac{3}{\frac{1}{80} + \frac{1}{85} + \frac{1}{c_3}}$$
$$\therefore c_3 = \underline{68 \text{ km h}^{-1}}$$

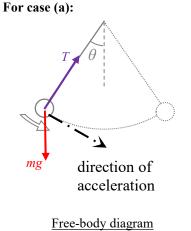
6. D

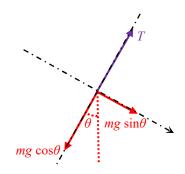
$$P - Q = (m_A + m_B)a$$

 $\therefore a = \frac{P - Q}{m_A + m_B}$



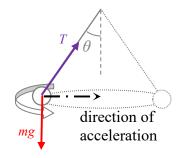
$$R - Q = (m_B) a$$

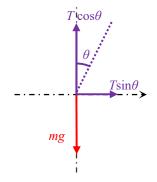

$$R = m_B (\frac{P - Q}{m_A + m_B}) + Q$$


$$= (3m)(\frac{P - Q}{2m + 3m}) + Q$$

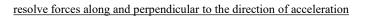
$$= \frac{3P + 2Q}{5}$$

-

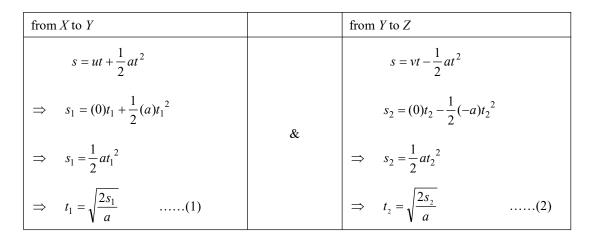




resolve forces along and perpendicular to the direction of acceleration


 \therefore For the case (a), $T = mg \cos\theta$

Free-body diagram


 \therefore For the case (b), $T \cos \theta = mg$

i.e.
$$T = \frac{mg}{\cos\theta}$$

	a	и	V	S	t
$X \rightarrow Y$	а	0	v_Y	s_1	t_1
$Y \rightarrow Z$	<i>-a</i>	VY	0	<i>s</i> ₂	t_2

According to equations of uniform accelerating motion,

	$v^2 = u^2 + 2as$
from X to Y	$(v_Y)^2 = (0)^2 + 2(a)s_1$
	$\Rightarrow s_1 = \frac{v_Y^2}{2a}$
from Y to Z	$(0)^2 = (v_Y)^2 + 2(-a)s_2$
	$\Rightarrow s_2 = \frac{v_Y^2}{2a}$
therefore,	$s_1 = s_2$

The total time $t = t_1 + t_2$ $= \sqrt{\frac{2s_1}{a}} + \sqrt{\frac{2s_2}{a}}$ [from (1) and (2)] $= \sqrt{\frac{2s_1}{a}} + \sqrt{\frac{2s_1}{a}}$ [$\because s_1 = s_2$] $= 2\sqrt{\frac{2s_1}{a}}$ $= 2\sqrt{\frac{s_1 + s_2}{a}}$ [$\because s_1 = s_2$] $= 2\sqrt{\frac{L}{a}}$ $= \sqrt{\frac{4L}{a}}$

B 9.

According to the formula for time of flight of a horizontal projectile motion, $t = \sqrt{\frac{2h}{g}}$

The flight times are same since the ball is projected with same height.

Reference:

		$a (m s^{-2})$	$u(m s^{-l})$	$v(m s^{-l})$	s (m)	t (s)
1 st anno in at	x	0	u_1		R_1	4
1 st project	у	-g	0		-h	
2sn and is at	x	0	u_2		R_2	4
2 ^{sn} project	у	-g	0		-h	t_2

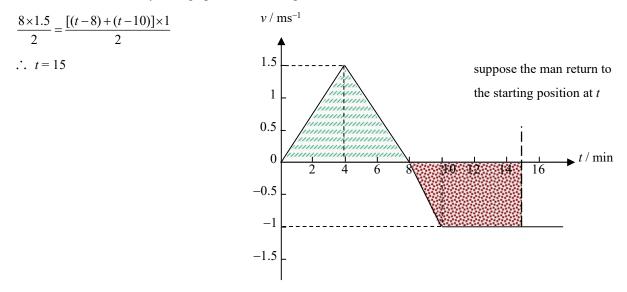
	formula	proof
time of flight:	$t = \sqrt{\frac{2h}{g}}$	$s_{y} = u_{y}t_{y} + \frac{1}{2}a_{y}t_{y}^{2}$
		$\Rightarrow -h = (0)(t) + \frac{1}{2}(-g)(t)^2$
		$\Rightarrow t = \sqrt{\frac{2h}{g}}$
range of horizontal projectile motion:	$R = u \sqrt{\frac{2h}{g}}$	$s_{x} = u_{x}t_{x} + \frac{1}{2}a_{x}t_{x}^{2}$
		$\Rightarrow R = (u)(t) + \frac{1}{2}(0)(t)^2$
		$\implies R = u \sqrt{\frac{2h}{g}}$
speed of projectile reached the ground:	$v = \sqrt{u^2 + 2gh}$	$v = \sqrt{v_x^2 + v_y^2}$
		$\Rightarrow v = \sqrt{(u_x + a_x t_x)^2 + (u_y + a_y t_y)^2}$
		$\Rightarrow v = \sqrt{[(u) + (0)(t)]^2 + [(0) + (g)(t)]^2}$
		$\Rightarrow v = \sqrt{u^2 + g^2 t^2}$
		$\Rightarrow v = \sqrt{u^2 + g^2 (\sqrt{\frac{2h}{g}})^2}$
		$\Rightarrow v = \sqrt{u^2 + 2gh}$

10. A

According to the law of conservation of energy,

$$\Delta KE_{x} + \Delta PE_{x} + \Delta KE_{y} + \Delta PE_{y} + W_{f} = 0$$

$$\Rightarrow \quad \left(\frac{1}{2}m_{x}v_{x}^{2} - \frac{1}{2}m_{x}u_{x}^{2}\right) + m_{x}g(\Delta h_{x}) + \left(\frac{1}{2}m_{y}v_{y}^{2} - \frac{1}{2}m_{y}u_{y}^{2}\right) + m_{y}g(\Delta h_{y}) + fs = 0$$

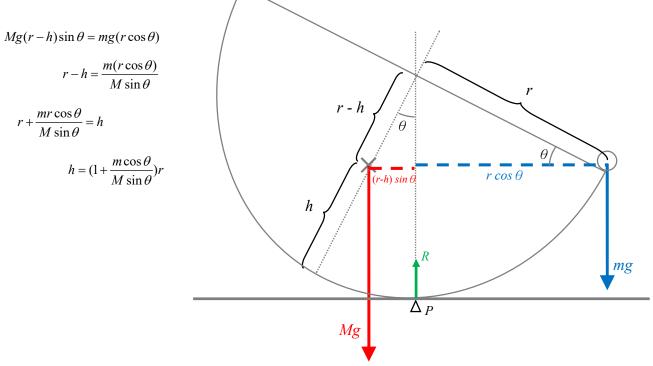

$$\Rightarrow \quad \left[KE_{x} - \frac{1}{2}m_{x}(0)^{2}\right] + m_{x}g(0) + \left[KE_{y} - \frac{1}{2}m_{y}(0)^{2}\right] + (2)(9.81)(-0.5) + (4)(0.5) = 0$$

$$\Rightarrow \quad KE_{x} + KE_{y} = (2)(9.81)(0.5) - (4)(0.5)$$

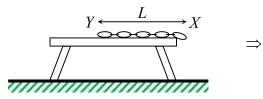
$$\Rightarrow \quad KE_{x} + KE_{y} = \frac{7.81 \text{ J}}{2}$$

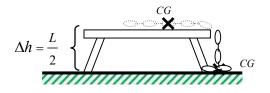
11. C

the area under the velocity-time graph means the displacement,



12. A


✓	(1)	g at the equator ($g_{\text{equator}} = g_{\text{pole}} - R_E \omega^2$) should be smaller than g at the poles.
×	(2)	$g_{\text{pole}} = \frac{GM_E}{R_E^2}$ which is independent of angular speed ω .
×	(3)	$g_{\text{pole}} = \frac{GM_{E}}{R_{E}^{2}} = \frac{G\rho(\frac{4}{3}\pi R_{E}^{3})}{R_{E}^{2}} = \frac{4}{3}\pi\rho GR_{E}$


13. A

Take moment about point P,

14. C

When the end of chain just leaves the table edge,

the center of gravity (CG) drops $\Delta h = \frac{L}{2}$

According to the conservation law of energy,

$$\Delta K.E. = \Delta P.E.$$

$$\frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mg(\Delta h)$$

$$\frac{1}{2}mv^2 - \frac{1}{2}m(0)^2 = mg(\frac{L}{2})$$

$$\therefore v = \sqrt{gL}$$

物理_DSE Mock_2019_Marking Scheme(English version).doc 15/3/2020 8:40:55 AM

	According to $\Delta y = \frac{\lambda D}{a}$, fringe separation Δy increases as wavelength increases. Since wavel	
×	(1)	light is longer than green light, slit separation is increased if green light is replaced by red light. Therefore,
		number of fringes on the screen is decreased.
×	(2)	According to $\Delta y = \frac{\lambda D}{a}$, the width of slit is independent of the fringe separation.
		Δy is decreased when distance between the double-slit and the screen D is reduced. Therefore, number of
	(3)	fringes on the screen is increased.

16. D

Suppose the length of the string is *L*.

Originally,

Fundamental wavelength $\lambda_0 = 2L$, and fundamental frequency $f_0 = v/2L$.

If the length of the string is reduced by half,

the new fundamental wavelength $\lambda_0' = 2(L/2) = L$; and

the new fundamental frequency $f_0' = v/L$.

So, the frequencies of the stationary wave which formed on the string with k loops $f_k' = kf_0' = kv/L$.

However, the frequency of the vibrator remains unchanged.

i.e. $f_0 = f_k$ ' \Rightarrow v/2L = kv/L \Rightarrow k = 1/2 which is impossible.

17. C

✓	(1)	Sound wave is a mechanical wave.
×	(2)	Sound wave is longitudinal wave. The vibrating direction is parallel to the propagation direction.
	(2)	The speed of sound is higher as the wave travels from air to water. But the frequency of the sound is
•	(3)	unchanged. According to $v=f\lambda$, the wavelength of a sound wave increases.

18. A

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \qquad \Rightarrow \qquad \frac{1}{0.2} + \frac{1}{v} = \frac{1}{-0.05}$$
$$\Rightarrow \qquad \therefore v = -0.04 \text{ m}$$
$$m = \frac{v}{u} \qquad \Rightarrow \qquad m = \frac{0.04}{0.2} = \underline{0.2}$$

19. A

Constructive interference occurs at *P*, the path difference (p.d.) $\Delta x_P = \lambda$.

~	(1)	$f \to f' = \frac{f}{2} \xrightarrow{\text{wave speed unchanged}} \lambda \to \lambda' = 2\lambda$ $\Delta x_p = \lambda = \frac{\lambda'}{2} \text{ which means destructive interference occurs at } P.$
	(1)	$\Delta x_P = \lambda = \frac{\lambda'}{2}$ which means destructive interference occurs at <i>P</i> .
×	(2)	Only statement (2) does not affect the relationship between the p.d. and wavelength. i.e. $\Delta x_p = (n - \frac{1}{2})\lambda$
		still holds when the amplitude of vibration is doubled
		It may be neither constructive nor destructive interference occurs at <i>P</i> . It is because none of the conditions
×	(3)	$\Delta x_p = n\lambda$ or $\Delta x_p = (n - \frac{1}{2})\lambda$ is hold.

20. A

Only amplitude (maximum displacement) and period (time) can be deduced directly from the displacement-time graph.

~	(1)	Since $f = \frac{1}{T}$, the frequency of the wave can also be deduced.
×	(2)	
×	(3)	

21. A

If any two balls attract each other, that means they are positive charged, negatively charged and neutral respectively.

Suppose those three balls are denoted by X, Y and Z which are positive charged, negatively charged and neutral at the beginning respectively.

		ch	arges carry	by		cha	arges carry	by
		ball X	ball Y	ball Z		ball X	ball Y	ball Z
At the	At the beginning		-q	0		+q	-q	0
Firstly	X touched Y	0	0	0	X touched Z	+q/2	-q	+q/2
Then X touched Z		0	0	0	X touched Y	<u>-q/4</u>	<i>_q</i> /4	+q/2
		(1) statemen	t		(2	2) statemen	it

				by		cha	arges carry	by
		ball X	ball Y	ball Z		ball X	ball Y	ball Z
At the beginning		+q	-q	0		+q	-q	0
Firstly	Firstly Y touched X		0	0	Y touched Z	+q	<i>-q</i> /2	<i>-q</i> /2
Then Y touched Z		0	0	0	Y touched X	+q/4	+q/4	-q/2
(1) staten			1) statemen	t		(2	2) statemen	it

		ch	arges carry	by		cha	irges carry	by
		ball X	ball Y	ball Z		ball X	ball Y	ball Z
At the beginning		+q	-q	0		+q	-q	0
Firstly	Firstly Z touched X		-q	+q/2	Z touched Y	+q	<i>-q</i> /2	-q/2
Then Z touched Y		+q/2	<i>_q</i> /4	<i>_q</i> /4	Z touched X	+q/4	<i>-q</i> /2	+q/4
	(2) statement				(2	2) statemen	ıt	

22. D

(Suppose the electric field towards right be positive.)

At position <i>W</i> ,	$E_{W} = \left[\frac{1}{4\pi\varepsilon} \frac{6Q}{(3d)^{2}}\right] + \left[-\frac{1}{4\pi\varepsilon} \frac{2Q}{(7d)^{2}}\right] = \frac{23}{147} \frac{Q}{\pi\varepsilon d^{2}}$
At position <i>X</i> ,	$E_{X} = \left[-\frac{1}{4\pi\varepsilon} \frac{6Q}{(d)^{2}}\right] + \left[-\frac{1}{4\pi\varepsilon} \frac{2Q}{(3d)^{2}}\right] = -\frac{14}{9} \frac{Q}{\pi\varepsilon d^{2}}$
At position <i>Y</i> ,	$E_{\gamma} = \left[-\frac{1}{4\pi\varepsilon} \frac{6Q}{(2d)^2}\right] + \left[\frac{1}{4\pi\varepsilon} \frac{2Q}{(2d)^2}\right] = -\frac{1}{4} \frac{Q}{\pi\varepsilon d^2}$
At position Z,	$E_{z} = \left[-\frac{1}{4\pi\varepsilon} \frac{6Q}{(6d)^{2}}\right] + \left[\frac{1}{4\pi\varepsilon} \frac{2Q}{(2d)^{2}}\right] = \frac{1}{12} \frac{Q}{\pi\varepsilon d^{2}}$ which has the smallest magnitude.

物理_DSE Mock_2019_Marking Scheme(English version).doc 15/3/2020 8:40:55 AM

23. C

When switch *S* is closed, $R_{XY} = (\frac{1}{100} + \frac{1}{R})^{-1} = 99 \Omega$ When switch *S* is opened, $R'_{XY} = (\frac{1}{100} + \frac{1}{R+R})^{-1}$ $\therefore R'_{XY} = (\frac{1}{100} + \frac{1}{R+R})^{-1} > (\frac{1}{100} + \frac{1}{R})^{-1} = 99$ and $R'_{XY} = (\frac{1}{100} + \frac{1}{R+R})^{-1} < (\frac{1}{100})^{-1} = 100$ $\therefore 99 < R'_{XY} < 100$

24. A

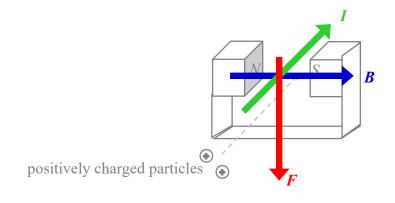
For case B, the lighting device always turns on when S_1 is closed.

For case C, the lighting device always turns on either S_1 or S_2 is closed.

For case D, the lighting device always turns off either S_1 or S_2 is opened.

25. (deleted)

×	A	According to Fleming's right hand rule, rod PQ induced a current flow from Q to P when the rod move
	A	towards left initially. i.e. the induced current is in the direction SRQP (anticlockwise).
×	В	According to Fleming's left hand rule, there is a leftwards included magnetic force acts on the rod RS when
		the current flow from S to R and B-field points into paper.
×	C	According to Lenz's law, there is a force acts on the rod PQ towards right to against the reason (moving to
	С	left).
~	D	The rod <i>PQ</i> decelerates.


$$F_{net} = F_E \qquad \Rightarrow \qquad \vec{ma} = q\vec{E}$$
$$\Rightarrow \qquad \vec{ma} = (-e)\vec{E}$$
$$\Rightarrow \qquad \vec{a} = -\frac{e}{m}\vec{E}$$

27. D

According the equation $R = \frac{\rho l}{A} = \frac{4\rho l}{\pi d^2}$, only resistance R is affected by the length and the diameter d but only resistivity ρ .

28. B

According to Fleming's left hand rule:

29. D

According to the Lenz's law, the induced current should flows anti-clockwisely to against the increasing of B-field when the ring is entering the magnetic field.

According to the Lenz's law, the induced current should flows clockwisely to against the decreasing of B-field when the ring when the ring is leaving the magnetic field.

30. B

$$V = \left(\frac{\left(\frac{1}{3} + \frac{1}{6}\right)^{-1}}{4 + \left(\frac{1}{3} + \frac{1}{6}\right)^{-1}}\right)(12) = \underline{4 \text{ V}}$$

31. A

The (kinetic) energy of a-particles can be absorbed effectively (weak penetrating power).

32. B

 $N = N_0 e^{-kt}$ \implies $N = N_0 e^{-(0.06)(1 \times 60)} = 0.0273 N_0$

33. D

 $235 + 1 = 137 + 95 + k \times 1$ $\therefore k = 4$

 $\Delta m = (235.043\ 93u + 1.008\ 67u) - (136.907\ 09u + 94.929\ 30u + 4 \times 1.008\ 67u)$ = 0.18153u = 0.18153 × 1.661×10⁻²⁷ kg ≈ 3.015 × 10⁻²⁸ kg

$$E = \mathrm{mc}^{2} = (3.015 \times 10^{-28})(3 \times 10^{8})^{2}$$
$$= \underline{2.71 \times 10^{-11} \mathrm{J}}$$

Paper I Section B

1. (a) Energy supplied by the stove = Pt= 2300 × 30 × 60 = 4.14 × 10⁶ J 1 M

Energy absorbed by the water = $mc\Delta T + m_v l_v$

$$= 4 \times 4200 \times (100 - 20) + (4 \times 30\%) \times (2.26 \times 10^{6})$$
$$= 4.056 \times 10^{6} \text{ J} \qquad \qquad 1 \text{ M}$$

According to conservation law of energy,

$$C\Delta T + mc\Delta T + m_{\nu}l_{\nu} = Pt$$

$$C \times (100 - 20) + 4.056 \times 10^6 = 4.14 \times 10^6$$
 1 M

$$C = \underline{1050 \text{ J} \circ \text{C}}^{-1}$$
 1 A

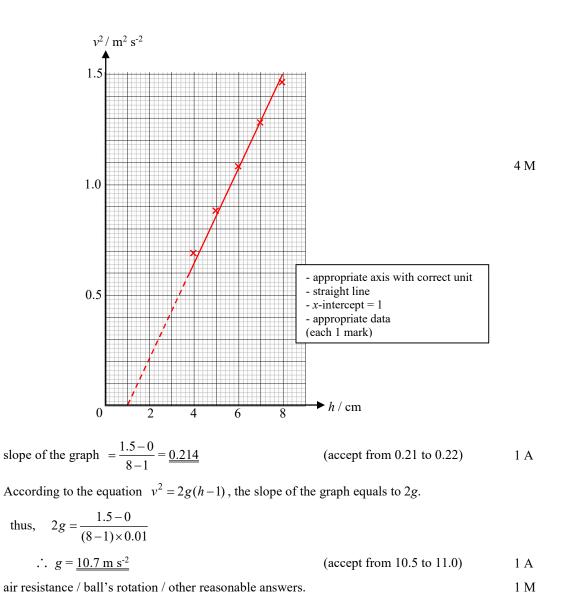
(c) The body of the kettle is made of metal; therefore heat can be conducted from the stove to the water inside the kettle effectively.
 The surface of the kettle is shinny; therefore the heat loss from the kettle by radiation is reduced.

2. (a) By
$$pV = nRT$$
 1 M

$$\Delta n = \frac{p\Delta V}{RT} = \frac{100 \times 10^3 \times (200 - 100) \times 10^{-6}}{8.31 \times (273 + 25)} = \frac{4.04 \times 10^{-3} \text{ mol}}{1 \text{ A}}$$

Marks

3. (a)


$$\Delta PE = \Delta KE$$
$$mg(h-1) = \frac{1}{2}mv^2 - \frac{1}{2}m(0)^2$$

$$\therefore v^2 = 2g(h-1) \qquad \text{where } h \ge 1$$

without condition of h reduce 1 mark

(b) (i)

Height <i>h</i> /cm	4.0	5.0	6.0	7.0	8.0
Speed $v / m s^{-1}$	0.828	0.939	1.04	1.13	1.21
$v^2 / m^2 s^{-2}$	0.686	0.882	1.08	1.28	1.46

(c)

(ii)

2020 8:40:55 AM

Marks

1 M

1 M + 1 A

18

1 M+1 A

4. (a)
$$mgh = \frac{1}{2}mv^2 \implies v = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 2}$$
 1 M

$$= 6.26 \text{ m s}^{-1}$$
 1 A

(b)
$$m_1u_1 + m_2u_2 = (m_1 + m_2)v$$

 $70(6\ 26) + 35(0) = (70 + 35)v$ 1 M

$$10(6.26) + 35(0) = (70+35)V$$

:.
$$v = 4.17 \text{ m s}^{-1}$$

(c)
$$mgh = \frac{1}{2}mv^2 \implies h = \frac{v^2}{2g} = \frac{(4.17)^2}{2(9.81)} = \underline{0.886 \text{ m}}$$

$$\therefore$$
 No, they cannot come back to the pier.

(d)

$$mgh = \frac{1}{2}mv^2 \implies v' = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 2} = \underline{6.26 \text{ m s}^{-1}}$$

 $m_1u'_1 + m_2u_2 = (m_1 + m_2)v'$
 $(70)u'_1 + 35(0) = (70 + 35)(6.26)$
 $u'_1 = 9.39 \text{ m s}^{-1}$
1 M

$$\Delta K.E. = \Delta P.E. \implies \frac{1}{2}mv^2 - \frac{1}{2}mu^2 = mgh$$

$$\frac{1}{2}m(9.39)^2 - \frac{1}{2}mu^2 = m(9.81)(2)$$

$$\therefore u = \underline{7 \text{ m s}^{-1}}$$

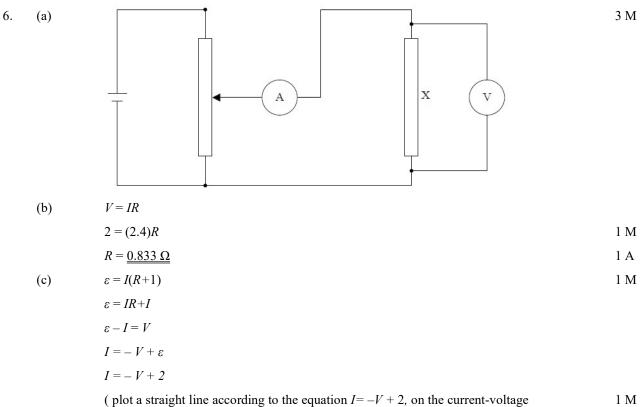
1 M

$$\therefore u = \underline{7 \text{ m s}^{-1}}$$

5.

(a)

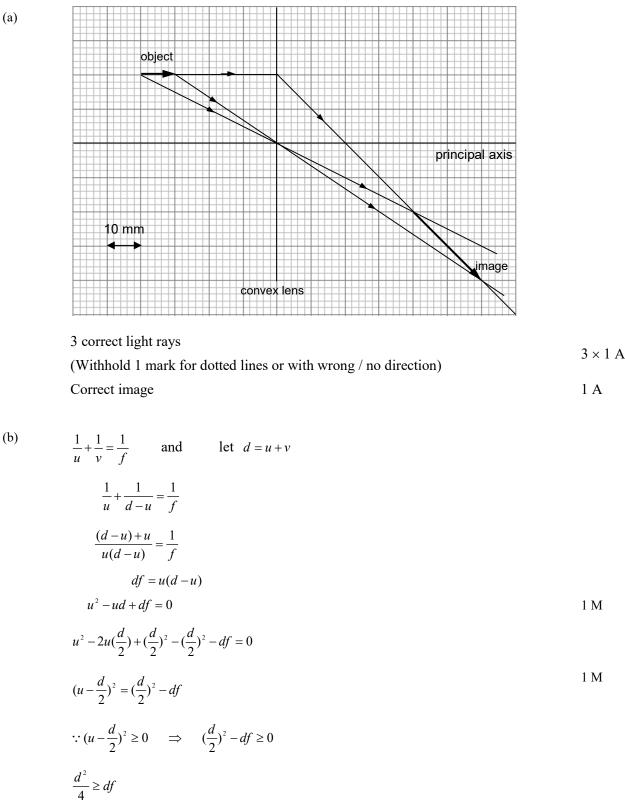
(b)


Let T be the tension of the elastic cord, and $R_{\rm H}$ and $R_{\rm V}$ be the horizontal and vertical components of the reaction force acting on the bar at X.

$$\begin{aligned} XO &= 1.2 - 0.8 = 0.4 \text{ m} \\ XQ &= 1.2 \times 2 - 0.8 = 1.6 \text{ m} \\ \text{Take moment about } X. \text{ In equilibrium,} \\ T \sin 30^{\circ} \times 0.8 &= 50 \times 9.81 \times 0.4 + 2000 \times 1.6 \\ T &= 8490 \text{ N} \\ 1 \text{ M} \\ T &= 8490 \text{ N} \\ 1 \text{ A} \end{aligned}$$
The magnitude of the tension of the elastic cord is 8490 N.
Along the vertical direction:

$$R_{\text{V}} = T \sin 30^{\circ} + 50 \times 9.81 + 2000 = 6740 \text{ N} \\ 1 \text{ M} \\ \text{Along the horizontal direction:} \\ R_{\text{H}} &= T \cos 30^{\circ} = 7350 \text{ N} \\ 1 \text{ M} \end{aligned}$$

Magnitude of the reaction force acting on the bar at $X = \sqrt{R_v^2 + R_H^2}$


$$= \sqrt{6740^2 + 7350^2}$$

= 9970 N 1A

characteristics graph)`

1 A

$$u + v \ge 4f$$
 1 M

物理_DSE Mock_2019_Marking Scheme(English version).doc 15/3/2020 8:40:55 AM

 $d \ge 4f$

7.

<u>Marks</u> 1 M

1 A

1 M

8. (a)

$$n_a \sin \theta_a = n_g \sin \theta_g \qquad \Rightarrow \qquad (1) \sin 60^\circ = (1.52) \sin r$$

$$\Rightarrow \qquad r = \sin^{-1}(\frac{\sin 60^{\circ}}{1.52}) = 34.73^{\circ}$$

$$\theta = 90^{\circ} - r = 55.3^{\circ}$$
 1 M

Since the critical angle
$$C = \sin^{-1} \frac{1}{1.52} = 41.1^{\circ} < \theta$$
, total internal reflection occurs at A. 1 M

(b)

$$n\sin r = (1)\sin 60^{\circ}$$

$$n\sin \theta = (1)\sin 90^{\circ}$$

$$\Rightarrow \begin{cases} n = \frac{\sin 60^{\circ}}{\sin r} \\ n = \frac{\sin 90^{\circ}}{\sin(90^{\circ} - r)} \end{cases} \Rightarrow \frac{\sin 60^{\circ}}{\sin r} = \frac{\sin 90^{\circ}}{\sin(90^{\circ} - r)}$$

$$\Rightarrow \sin 60^\circ = \tan r \quad \Rightarrow \quad r = 40.9^\circ \qquad \qquad 1 \text{ M}$$

$$\therefore \quad n = \frac{\sin 60^{\circ}}{\sin 40.9^{\circ}} = \underline{1.32}$$
 1 A

9.

(a)

The electric field points <u>upwards</u>.

$$E = \frac{V}{d} = \frac{4.68 \times 10^3}{0.5 \times 10^{-2}} = \frac{936000 \text{ N C}^{-1}}{1 \text{ A}}$$

$$F_B = F_E = qE = (3.2 \times 10^{-19})(936000) = \underline{3.00 \times 10^{-13} \text{ N}}$$

$$F_B = qvB \sin \theta$$
1 A

$$3.00 \times 10^{-13} = (3.2 \times 10^{-19})v(1.8) \sin 90^{\circ}$$
 1 M

:.
$$v = 5.20 \times 10^5 \,\mathrm{m \, s^{-1}}$$
 1 A

(d)

(c)

$$F_C = F_B \implies \frac{mv^2}{r} = qvB$$

$$\Rightarrow r = \frac{mv}{Bq} = \frac{(6.64 \times 10^{-27})(5.2 \times 10^5)}{(2)(3.2 \times 10^{-19})} = 0.005395 \,\mathrm{m}$$
 1 M

$$\therefore d = 2r = \underline{0.0108 \,\mathrm{m}}$$
 1 A

(e) (i) There are two forces, electrostatic force
$$F_{\rm E}$$
 and the induced magnetic force $F_{\rm B}$, which are in opposite direction acts on the electron.

$$F_{\rm E} = F_{\rm B}$$
 \Leftrightarrow $qE = qvB$ \Leftrightarrow $v = \frac{E}{B}$

When an electron is projected to the selector at the speed in (c), that means <u>net force on it is</u> <u>zero since F_E and F_B equals and in opposite</u>. So, the electron can pass without deflection. 1 M+1 M

11. (a) Consider the atomic numbers

(b)

$$92 + 0 = 36 + x + 2 \times 0$$
1 A $x = 56$ 1 AIt denotes the atomic number (or proton number) of Ba.1 AThe neutrons released in the nuclear reaction continue splitting other $\frac{235}{92}$ U nuclei.1 A

(c) Mass difference in the nuclear reaction

$$= (235.0439 + 1.0087) - (89.9195 + 143.9229 + 2 \times 1.0087)$$
$$= 0.1928 \text{ u}$$
 1M

Total energy output $= \Delta mc^2 \times (3600 \times 24)$

$$= \left(2 \times 10^{-5} \times \frac{0.1928}{235.0439}\right) \times (3.00 \times 10^8)^2 \times (3600 \times 24)$$
 1M

$$= 1.28 \times 10^{14} \text{ J}$$
 1A

Paper II

Section A: Astronomy and Space Science

1.	2.	3.	4.	5.	6.	7.	8.
D	В	В	В	В	В	А	В

Marks

1 A

$$d = \frac{1}{p} = \frac{1}{(6.00 \times 10^{-3})}$$
1 M

$$\Rightarrow \quad d = \underline{167 \text{ pc}} \qquad \qquad 1 \text{ A}$$

(c) (i) By Doppler shift
$$\frac{\Delta\lambda}{\lambda_0} = \frac{v_r}{c}$$
 1 M

By comparing the spectrum of the object with the spectrum of a stationary object, the radial velocity of Gemini ζ can be determined. 1 M +1 A

(ii)
$$v_r = \frac{2\pi r}{T} \implies 620 = \frac{2\pi r}{(233 \times 86400)} \implies r = \underline{1.99 \times 10^9 \text{ m}} \qquad 1 \text{ A}$$

The range of radius of the star $R = 60R_{\odot} \pm r$

$$= 60 \times 695500 \times 10^{3} \pm 1.99 \times 10^{9}$$

= (4.173×10¹⁰ ± 1.99 ×10⁹) m =(60 ± 2.86) R_o
i.e. 3.974 ×10¹⁰ m < R < 4.372 ×10¹⁰ m or 57.1R_o < R < 62.9R_o 1 A

By Stefan's law, $L = 4\pi\sigma R^2 T^4$

Minimum luminosity =
$$4\pi (5.67 \times 10^{-8})(3.974 \times 10^{10})^2 (7000)^4$$

= $2.40 \times 10^{30} \text{ J s}^{-1}$ 1 A
Maximum luminosity = $4\pi (5.67 \times 10^{-8})(4.372 \times 10^{10})^2 (7000)^4$

$$= 3.27 \times 10^{30} \,\mathrm{J \, s^{-1}}$$
 1 A

i.e.
$$\underline{2.40 \times 10^{30} \text{ J s}}^{=1} \leq L \leq 3.27 \times 10^{30} \text{ J s}^{=1}$$

物理_DSE Mock_2019_Marking Scheme(English version).doc 15/3/2020 8:40:55 AM

2.

1.	2.	3.	4.	5.	6.	7.	8.
А	В	D	С	А	В	D	D

Marks

(a)	Transmission electron microscope	1 M
(b)	An electron gun consists of a <u>cathode</u> and <u>accelerating anode</u> .	1 M
(c)	After the electrons released from the electron gun and hits the specimen, some electrons are	
	scattered and some others will pass through the specimen. The amount of electrons passed	
	through is affected by the density of the specimen. Hence the amount of electron passed	
	through can reveal the details of the specimen.	1 M
	The electron beam is deflected by magnetic objective lens and magnetic projecting lens after	1 M
	passing through the specimen.	
	Finally, the electron beam is focused on the screen to form an image.	1 M
(d)	For an transmission electron microscope to resolve a length of 0.25 nm, the wavelength of	1 1 4
	an electron $\lambda \approx 2.5 \times 10^{-10}$ m.	1 M
	$p = \frac{h}{\lambda} = \frac{6.63 \times 10^{-34}}{2.5 \times 10^{-10}} = 2.65 \times 10^{-24} \mathrm{kg \ m \ s^{-1}}$	1 M

Kinetic energy gained by electrons is provided from the potential difference between the cathode and anode. Hence,

$$eV = \frac{1}{2}mv^2$$
 \Rightarrow $V = \frac{p^2}{2me} = \frac{(2.65 \times 10^{-24})^2}{2(9.11 \times 10^{-31})(1.60 \times 10^{-19})}$ 1 M

(e)

Increase the potential difference between cathode and anode. 1 M

Section C: Energy and Use of energy

1.	2.	3.	4.	5.	6.	7.	8.
A	*	C	В	*	С	D	В

* This item was deleted.

			Marks
3.	(a)	A building envelope consists of walls and windows.	1 M + 1M
		The building gains heat through the walls by conduction	1 M
		The building gains heat through the windows by radiation of sunlight.	1 M
	(b)	$\frac{Q_C}{t} = \frac{\kappa A \Delta T}{d} = \frac{(3)(530 \times 4 \times \frac{31}{31+13})(42-24)}{1} = 80656 \text{ W}$	1 M
		$\frac{P_C}{A} = \frac{80656}{530 \times 4 \times \frac{31}{31 + 13}} = \frac{54 \text{ W m}^{-2}}{530 \times 4 \times \frac{31}{31 + 13}}$	1 A
	or	$\Delta = - (A T)$	1 M + 1 A
	(c)	$\frac{Q_r}{t} = (530 \times \frac{13}{31 + 13} \times 4)(30) = \underline{18800 \text{ W}}$	1 M + 1 A
	(d)	$OTTV = \frac{80565 + 18800 + 4080}{-37.4 \text{ W m}^{-2}}$	$1 M \pm 1 A$

OTTV =
$$\frac{80565 + 18800 + 4080}{530 \times 4 + 650} = \underline{37.4 \text{ W m}^{-2}}$$
 1 M + 1 A

Section D: Medical Physics

)

1.	2.	3.	4.	5.	6.	7.	8.
А	А	D	С	А	В	А	С

Marks

Half-value thickness =
$$\frac{\ln 2}{\mu}$$

$$=\frac{\ln 2}{4.0}$$
 1 M

$$= 0.173 \text{ cm}$$
 1 A

(b) (i)
$${}^{99m}_{43}\text{Tc} \rightarrow {}^{99}_{43}\text{Tc} + \gamma$$
 1 A
(ii) It emits γ radiation only, which causes very little amount of cellular damage 1 A
and can emerge from inside the patient to be detectable externally. 1 A
Also, the decay product (technetium-99) is stable as it has a very long half-life. 1 A
(iii) By $\frac{1}{2} = \frac{1}{2} + \frac{1}{2}$

By
$$\frac{1}{t_{eff}} = \frac{1}{t_{phy}} + \frac{1}{t_{bio}}$$
,
 $t_{eff} = \left(\frac{1}{t_{phy}} + \frac{1}{t_{bio}}\right)^{-1} = \left(\frac{1}{6} + \frac{1}{24}\right)^{-1} = 4.8$ hours 1 M

$$24 \text{ hours} = 5 \times 4.8 \text{ hours} (= 5 \text{ half-lives})$$
 1 M

Activity after 24 hours =
$$4 \times 10^8 \times \left(\frac{1}{2}\right)^5 = 1.25 \times 10^7 \text{ Bq}$$
 1A

(c) Radionuclide imaging