

HKDSE MOCK EXAMINATION 2021

Physics

Marking Scheme

Marking Scheme

Paper I Section A

Question No.	Key	Question No.	Key
1.	В	26.	C
2.	В	27.	C
3.	A	28.	C
4.	D	29.	В
5.	В	30.	C
6.	D	31.	C
7.	C	32.	A
8.	D	33.	D
9.	A		
10.	D		
11.	В		
12.	В		
13	A		
14.	A		
15.	В		
16.	C		
17.	C		
18.	В		
19.	В		
20.	D		
21.	D		
22.	A		
23.	C		
24.	A		

25.

C

Paper I Section B

1. (a) Hard snow blocks are good insulators since there is trapped air inside them. 1 M + 1 M

(b) (i)

hot air

sleeping area

cold air

1 A + 1 A

Marks

(ii) Hot air is <u>less dense</u> therefore it <u>floats up to the top</u> of the igloo. 1 M + 1 M

Cold air is denser therefore it sinks down the bottom of the igloo. 1 M + 1 M

(c) The air hole on the top of the igloo <u>allows air to enter</u> which <u>avoids suffocation</u>. 1 M + 1 M

2. (a) (i) 16.0 mol 1 M + 1 A

(ii) $n_x' = 6.42 \text{ mol}$ (6.35 ~ 6.45 accepted) 1 M + 1 A

 $n_y' = 9.63 \text{ mol}$ (9.55 ~ 9.65 accepted) 1 M + 1 A

(iii) $\Delta n = 2.40 \text{ mol}$ (2.35 ~ 2.45 accepted) 1 M + 1 A

(iv) The volume of capillary tube is neglected. 1 M

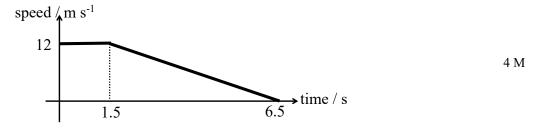
Nitrogen is an ideal gas. 1 M

(b) (i) $M_x : M_Y = 31 : 90$ 1 M + 1 A

(ii) The thread moves from X to Y. 2 M + 1 M

3. (a) (i) 58.86 J 1 M + 1 A

(ii) 19.62 J


(b) Part of the loss of potential energy of P converts to the kinetic energy of P and Q. 1 M

4.43 m s⁻¹

4. (a) 1.5 s

(b) -2.4 m s^{-2}

(c) 6.5 s

5. (a) Put some sponge at the edge of the ripple tank.

Marks 1 M

(b) The wave produced by the dot vibrator <u>transfers to all direction</u> and the wavefront is always <u>perpendicular to the propagation direction</u>.

1 M + 1 M

(c) (i) 4 cm

1 A

(ii) 2 m s^{-1}

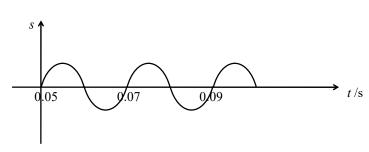
1 A

(iii) $\Delta x_P = 0$ cm

1 A

 $\Delta x_Q = 3$ cm

1 A


Constructive interference occurs at *P*.

1 M

Destructive interference occurs at Q.

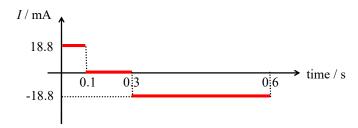
1 M

(iv)

2 M +1 M

6. (a) (i) clockwise

1 M


No current

1 M

anti-clockwise

1 M

(b)

1 M + 1 M

from t = 0 s to t = 0.1 s : 18.8 mA

1 M

from t = 0.1 s to t = 0.3 s : 0 mA

1 M

from t = 0.3 s to t = 0.6 s: 18.8 mA

1 M

7. (a) 20:1

1 M + 1 A

(b) (i) 4.55 A

1 M + 1 A

(ii) 75.8%

1 M + 1 A

No, the transformer is not ideal.

1 M

(iii) Using <u>laminated soft-iron core</u> can <u>reduce the eddy current</u> induced.

1 M + 1 A

Using thicker wire can reduce the heating effect of the coil.

1 M + 1 A

 $\begin{tabular}{ll} (c) & The \underline{output} $voltage$ and power of the transformer $\underline{decrease}$. \end{tabular}$

1 M

Therefore, the lamp becomes dimmer.

1 M

				<u>Marks</u>
8.	(a)	(i)	2.35 x 10 ⁻¹⁰ min ⁻¹	1 A
		(ii)	0.417 mol	1 A
		(iii)	73.8 min ⁻¹	1 A
		(iv)	10200 yrs	1 M + 1 A
	(b)	(i)	A nuclear chain reaction is a fission reaction that <u>releases extra neutrons</u> .	1 M
			Thus the fission reaction could maintain or self-propagate.	1 M
		(ii)	$7.38 \times 10^{13} \mathrm{J}$	2 M + 1 A

Paper II

Section A: Astronomy and Space Science

1.	2.	3.	4.	5.	6.	7.	8.
В	A	C	В	С	В	A	C

			Marks
1.	(a)	White drafts of higher mass have higher density.	1 M
		According to the graph, white drafts of higher mass have shorter radii. Therefore, they	1 3 4
		have higher densities.	1 M
	(b)	19700 K	1 M + 1 A
	(c)	11100 K	2 M + 1 A
	(d)	$2.58 \times 10^8 \mathrm{N}$	2 M + 1 A

Section B: Atomic world

1.	2.	3.	4.	5.	6.	7.	8.
В	A	A	С	D	В	A	A

Marks

2. (a) The electron is able to revolve in certain stable orbits around the nucleus without radiating 1 Many energy. The angular momentum of electrons at the stable obits equals the multiples of

1 M + 1M

 $\frac{h}{2\pi}$.

(b) 1:1

2 M + 1 A

(c) (i) $1.097 \times 10^7 \,\mathrm{m}^{-1}$

3 M + 1 A

(ii) 656 nm

1 A

Section C: Energy and Use of energy

1.	2.	3.	4.	5.	6.	7.	8.
В	A	C	В	A	С	D	В

Marks 1400 m^2 3. 1 M + 1 A(a) 39.6 m 1 M + 1 A(b) 235 MeV (c) (i) 1 M + 1 A(ii) a moderator is a medium that reduces the speed of fast neutrons 1 M the reactor quickly runs hotter and hotter, until some other factor slows the reaction rate (iii) 1 M such as the water (as a moderator) flashes to steam and the reactor shutdown. (d) - saving electricity such as turning off unneeded electrical appliance or installing LED 1 M + 1 Mlighting tools. - using massive transports or electric vehicles - use less fossil fuel (or any reasonable answers)

Section D: Medical Physics

1.	2.	3.	4.	5.	6.	7.	8.
С	A	D	С	В	В	С	С

				<u>Marks</u>
4.	(a)		414.8 kg m s ⁻¹	1 A
	(b)		$1.46 \times 10^6 \mathrm{kg} \;\mathrm{m} \;\mathrm{s}^{\text{-1}} \mathrm{or} 1.63 \times 10^6 \mathrm{kg} \;\mathrm{m} \;\mathrm{s}^{\text{-1}}$	2 M +1 A
	(c)		0.08% (1:1250)	1 M +1 A
	(d)	(i)	The resolution increases with the frequency	1 M
		(ii)	Acoustic impedance of the body tissue.	1 M
	(e)		A-scan record the amplitude while B-scan record the brightness	1 M +1 M