

HKDSE MOCK EXAMINATION 2023

Physics Marking Scheme

Marking Scheme

Paper I Section A

Question No.	Key	Question No.	Key
1.	В	26.	С
2.	В	27.	С
3.	А	28.	С
4.	D	29.	В
5.	В	30.	С
6.	D	31.	С
7.	С	32.	А
8.	D	33.	D
9.	А		
10.	D		
11.	В		
12.	В		
13	А		
14.	А		
15.	В		
16.	С		
17.	С		
18.	В		
19.	В		
20.	D		
21.	D		
22.	А		
23.	С		
24.	А		
25.	С		

Paper I Section B Marks Hard snow blocks are good insulators since there is trapped air inside them. 1. (a) 1 M + 1 M(b) 1 A + 1 A(i) air hole e top of the igloo. (ii) Hot air is less dense therefore it floars up to the 1 M + 1 M Cold air is denker therefore it sinks down the bottom of the igloo. 1 M + 1 M The air hole on the s ail to enter which avoids suffocation. (c) 1 M + 1 Mhot air 2. (a) (i) 16.0 mol 1 M + 1 A $n_x' = 6.47 \mod (6.35 \sim 6.45 \text{ accepted})$ 1 M + 1 A (ii) 9.63 mole (9.5% arg. 85 accepted) $n_y' =$ 1 M + 1 A1 M + 1 A(iii) $\Delta n = 2.40 \text{ mol} (2.35 \sim 2.45 \text{ accepted})$ (iv) The volume of capillary tube i negle cold air 1 M Nitrogen is an ideal gas. 1 M (b) (i) $M_x: M_y = 31:90$ 1 M + 1 A (ii) The thread moves from *X* to *Y*. 2 M + 1 M58.86 J 1 M + 1 A 3. (a) (i) (ii) 19.62 J Part of the loss of potential energy of *P* converts to the kinetic energy of *P* and *Q*. (b) 1 M 4.43 m s⁻¹ 1 A 4. (a) 1.5 s 1 M + 1 A-2.4 m s⁻² (b) 1 M + 1 A (c) 6.5 s 1 M + 1 A4 M speed / m s⁻¹

				<u>Marks</u>
5.	(a)		Put some sponge at the edge of the ripple tank.	1 M
	(b)		The wave produced by the dot vibrator <u>transfers to all direction</u> and the wavefront is always <u>perpendicular to the propagation direction</u> .	1 M + 1 M
	(c)	(i)	4 cm	1 A
		(ii)	2 m s ⁻¹	1 A
		(iii)	$\Delta x^p = 0 \text{ cm}$	1 A
			$\Delta x^{\varrho} = 3 \text{ cm}$	1 A
			Constructive interference occurs at <i>P</i> .	1 M
			Destructive interference occurs at Q.	1 M
		(iv)	S A	2 M +1 M
			\square	
6.	(a)	(i)	clockwise	1 M
			No current	1 M
			anti-dockwise	1 M
	(b)		1/105 $9/07$ $9/9$ $7/18$	1 M + 1 M
			from $t = 0$ to $t = 0.1$ s : 18.8 mA	1 M
			from $t = 0.1$ s to $t = 0.3$ s : 0 mA	1 M
			from $t = 0.3$ s to $t = 0.6$ s : 18.8 mA	1 M
			$\rightarrow 0$ $\rightarrow 0$ $\rightarrow time / s$	
7.	(a)		$20 : \frac{1}{18.8}$ 0.1 0.5 00	1 M + 1 A
	(b)	(i)	4.55 A	1 M + 1 A
		(ii)	75.8%	1 M + 1 A
			No, the transformer is not ideal.	1 M
		(iii)	Using laminated soft-iron core can reduce the eddy current induced.	1 M + 1 A
			Using thicker wire can reduce the heating effect of the coil.	1 M + 1 A
	(c)		The <u>output voltage</u> and power of the transformer <u>decrease</u> .	1 M
			Therefore, the lamp becomes <u>dimmer</u> .	1 M

				<u>Marks</u>
8.	(a)	(i)	$2.35 \times 10^{-10} \text{ min}^{-1}$	1 A
		(ii)	0.417 mol	1 A
		(iii)	73.8 min ⁻¹	1 A
		(iv)	10200 yrs	1 M + 1 A
	(b)	(i)	A nuclear chain reaction is a fission reaction that releases extra neutrons.	1 M
			Thus the fission reaction could maintain or self-propagate.	1 M
		(ii)	$7.38 \ge 10^{13} \text{ J}$	2 M + 1 A

Paper II Section A: Astronomy and Space Science

1.	2.	3.	4.	5.	6.	7.	8.
В	А	С	В	С	В	А	С

			Marks
1.	(a)	White drafts of higher mass have higher density.	1 M
		According to the graph, white drafts of higher mass have <u>shorter radi</u> . Therefore, they have <u>higher densities</u> .	1 M
	(b)	19700 K	1 M + 1 A
	(c)	11100 K	2 M + 1 A
	(d)	2.58 x 10 ⁸ N	2 M + 1 A

Section B: Atomic world

1.	2.	3.	4.	5.	6.	7.	8.
В	А	А	С	D	В	А	А

				<u>Marks</u>
2.	(a)		The electron is able to revolve in certain stable orbits around the nucleus without radiating	1 M + 1M
			$\frac{any energy}{l}$. The <u>angular momentum</u> of electrons at the stable obits equals the <u>multiples of</u>	
			$\frac{h}{2}$	
			2π	
	(b)		1:1	2 M + 1 A
	(c)	(i)	$1.097 \text{ x } 10^7 \text{ m}^{-1}$	3 M + 1 A
		(ii)	656 nm	1 A

Section C: Energy and Use of energy

1.	2.	3.	4.	5.	6.	7.	8.
В	А	С	В	А	С	D	В

				Marks
3.	(a)		1400 m^2	1 M + 1 A
	(b)		39.6 m	1 M + 1 A
	(c)	(i)	235 MeV	1 M + 1 A
		(ii)	a moderator is a medium that reduces the speed of fast neutrons	1 M
		(iii)	the <u>reactor quickly runs hotter and hotter</u> , until some other factor slows the reaction rate such as the water (as a moderator) flashes to steam and the reactor shutdown.	1 M
	(d)		- saving electricity such as turning off unneeded electrical appliance or installing LED lighting tools.	1 M + 1 M
			- using massive transports or electric vehicles	
			- use less fossil fuel	
			(or any reasonable answers)	

Section D: Medical Physics

1.	2.	3.	4.	5.	6.	7.	8.
С	А	D	С	В	В	С	С

				Marks
4.	(a)		414.8 kg m s ⁻¹	1 A
	(b)		1.46 x 10 ⁶ kg m s ⁻¹ or 1.63 x 10 ⁶ kg m s ⁻¹	2 M +1 A
	(c)		0.08% (1:1250)	1 M +1 A
	(d)	(i)	The resolution increases with the frequency	1 M
		(ii)	Acoustic impedance of the body tissue.	1 M
	(e)		A-scan record the amplitude while B-scan record the brightness	1 M +1 M