

HKDSE MOCK EXAMINATION 2024

Physics

Marking Scheme

Marking Scheme

Paper I Section A

Question No.	Key	Question No.	Key
1.	С	26.	С
2.	В	27.	С
3.	А	28.	В
4.	В	29.	А
5.	А	30.	А
6.	D	31.	D
7.	C	32.	C
8.	Ā	33.	D
9.	А		
10.	D		
11	Л		
12	D		
13	C E		
14	B		
15.	B		
16	P		
10.	D A		
17.	R		
10.	Δ		
1). 20	Δ		
20.	11		
21.	В		
22.	В		
23.	А		
24.	В		
25.	D	,	

Paper I Section B

(a)

ŀ

Marks

$$By pV = nRT 1 M$$

$$n = \frac{pV}{RT} = \frac{(10^5)(1200 \times 10^{-6})}{(8.31)(27 + 273)} = \underline{0.0481 \text{ mol}}$$
 1 A

(b) Total amount of gas molecules before the tap is opened = Total amount of gas molecules after the tap is opened 1 M

$$\frac{(10^{5})(1200\times10^{-6})}{(8.31)(27+273)} + 0 = \frac{p'(1200\times10^{-6})}{(8.31)(27+273)} + \frac{p'(400\times10^{-6})}{(8.31)(127+273)}$$
1 M

$$p' = 7.99 \times 10^4 Pa$$
 1 A

2.

(a)

1.

$$E_{stored} = \frac{1}{2}mu^2 = \frac{1}{2}(0.5)(0.8)^2$$
1 M

(b)
$$W = Fs \implies 0.16 = F(0.05)$$
 1 M

:
$$F = \frac{0.16}{0.05} = \underline{3.2 \,\mathrm{N}}$$
 1 A

No, the maximum compression of the spring should be larger than 5 cm 1 M

It is because the <u>total mechanical energy is larger</u>. The height of the trolley drops when the spring is compressed. Therefore, more kinetic energy and gravitational potential energy 1 M converts to elastic potential energy at the spring.

(Another answer is also acceptable)

=

Yes, the maximum compression of the spring is equal to 5 cm. 1 MAlthough the trolley is on an inclined runway, the speed of the trolley is also 0.8 m s^{-1} during the collision, which means the energy transferred from the trolley to the spring is still 1 Mthe same. (The height difference caused by spring's compression is neglected)

('compression less than 5 cm' is NOT accepted)

3

$$F_c = \frac{mv^2}{r} = \frac{(5 \times 10^4)(240)^2}{45 \times 10^3}$$

$$= 64000 \text{ N}$$
1 M

$$= \underline{64000 \, \text{N}} \qquad 1 \, \text{A}$$

(b)
$$\tan \theta = \frac{v^2}{gr} = \frac{(240)^2}{(9.81)(45 \times 10^3)}$$
 1 M

$$\therefore \theta = \underline{\underline{7.43^{\circ}}}$$
 1 A

(c)

$$F_L \cos \theta = mg \qquad \Rightarrow \qquad F_L = \frac{mg}{\cos \theta} = \frac{(5 \times 10^4)(9.81)}{\cos 7.43^\circ}$$
 1 M

$$\therefore F_L = \underline{495000 N}$$
 1 A

<u>Marks</u>

(1 mark for each correct ray)

5. (a) Take moment at O, $T(0.8)\sin 30^\circ = (50 \times 9.81)(0.4) + (2000)(1.2 + 0.4)$ 1 M

$$\therefore T = \underline{8490 \,\mathrm{N}}$$
 1 A

(b)
$$\begin{cases} R \sin \phi = T \cos 30^{\circ} & \dots(1) \\ R \cos \phi = T \sin 30^{\circ} + 50 \times 9.81 + 2000 & \dots(2) \end{cases}$$
 1 M

Solving above equations, we have

$$R = \sqrt{(T\cos 30^{\circ})^{2} + (T\sin 30^{\circ} + 50 \times 9.81 + 2000)^{2}}$$

= $\sqrt{(8490\cos 30^{\circ})^{2} + (8490\sin 30^{\circ} + 50 \times 9.81 + 2000)^{2}}$
= $\underline{9970 \text{ N}}$
1 A

6.

(a) By conservation of mass and energy,

$$4m_{p} = m_{He} + \Delta E$$

$$4(1.007279u) = m_{He} + \frac{(4.28 \times 10^{-12})}{(3 \times 10^{8})^{2}} \left(\frac{1}{1.661 \times 10^{-27}}\right)$$
1 M

$$\therefore m_{He} = \underline{4.000473u}$$
 1 A

(b) According to
$$P = \frac{E}{t} = \frac{N(\Delta E)}{t}$$
,

number of fusion occurs per second :
$$\frac{N}{t} = \frac{P}{\Delta E} = \frac{3.68 \times 10^{26}}{4.28 \times 10^{-12}} = 8.598 \times 10^{37} \text{ s}^{-1}$$
 1 M

Mass of the helium produced per second \vdots

$$\frac{M}{t} = \frac{N}{t} \times m_{He} = (8.598 \times 10^{37}) \times (4.000473 \times 1.661 \times 10^{-27}) = \underbrace{5.71 \times 10^{11} \text{ kg s}^{-1}}_{1 \text{ M} + 1 \text{ A}}$$

			<u>Marks</u>
7.	(a)	The <u>impact force</u> is equal to the <u>rate of change of momentum</u> during a collision.	1 M
		The airbags decrease the rate of change of momentum (i.e. impact force) by	
		increasing the time of the collision, which protect passengers from getting	1 M
		injured.	
	(b)	Seat-belt / crumple zones of vehicles / other reasonable answers	1 A + 1A
8.			
		$\frac{1}{1}$	
	(a)		
		(Perallel and evenly spaced field lines)	1 A
		(Correct direction)	1 A
			171
		Ţ	
		_	
	(b)	α	1 A+1 A
		electric force weight	
		★ (2 correct labeled forces)	
	(c)	The polarities of the parallel plates are reversed.	1 A
9.	(a)	Radio waves	1 A
	(b)	A cell typically uses a different set of frequencies from neighboring cells, to avoid	1 A
		interference within each cell.	
		Signal from the cell towers blocked by the construction materials such as brick, steel bar	1 M
		inside concrete wall, etc.	1 101
		Cell signal may enter a building through windows. However, going outside should allow cell	1 M
		phones to receive a stronger signal from the local cell towers.	
10	(a)	reflection	1 A
10.	(b)	Orientation 1	1 A
	(c)	The wave travels slower in region B.	1 M
	~ /	v_{i} λ_{i} v_{i} 3	
		$\frac{a}{v_B} = \frac{a}{\lambda_B} \implies \frac{a}{1} = \frac{1}{2}$	1 M
		$\therefore v_A = \underline{1.5 \mathrm{m s^{-1}}}$	1 A

物理_DSE Mock_2022_Marking Scheme(English).doc 17/3/2024 7:55:31 AM

Marks

10. Electric force = weight (b) (i)

$$Eq = mg$$
 1 M

$$E = \frac{mg}{q}$$

= $\frac{10^{-27} \times 9.81}{2 \times 1.60 \times 10^{-19}}$
= $3.066 \times 10^{-8} \text{ N C}^{-1}$
= $3.07 \times 10^{-8} \text{ N C}^{-1}$ 1 A

The electric field strength needed is about 3.07×10^{-8} N C⁻¹.

(ii) By
$$E = \frac{V}{d}$$

 $V = Ed = 3.066 \times 10^{-8} \times 0.005 = 1.53 \times 10^{-10} \text{ V}$ 1 M +1 A
The potential difference between the plates required is about $1.53 \times 10^{-10} \text{ V}$.
(iii) The EHT power supply is not suitable for the experiment 1 A

$$E = \frac{V}{d} = \frac{4.68 \times 10^3}{0.5 \times 10^{-2}} = \underline{936000 \text{ N C}^{-1}}$$

(b) The magnetic force points downwards. 1 M

$$F_B = F_E = aE = (3.2 \times 10^{-19})(936000) = 3.00 \times 10^{-13} \text{ N}$$
 1 A

$$F_B = qvB\sin\theta$$

$$3.00 \times 10^{-13} = (3.2 \times 10^{-19})v(1.8) \sin 90^{\circ}$$
 1 M

:.
$$v = 5.20 \times 10^5 \,\mathrm{m \, s^{-1}}$$
 1 A

(d) $F_C = F_B \implies \frac{mv^2}{r} = qvB$

(c)

$$\Rightarrow r = \frac{mv}{Bq} = \frac{(6.64 \times 10^{-27})(5.2 \times 10^5)}{(2)(3.2 \times 10^{-19})} = 0.005395 \,\mathrm{m}$$
 1 M

:
$$d = 2r = 0.0108 \,\mathrm{m}$$
 1 A

There are two forces, electrostatic force F_E and the induced magnetic force F_B , which are in (e) (i) opposite direction acts on the electron.

$$F_{\rm E} = F_{\rm B} \qquad \Leftrightarrow \qquad qE = qvB \qquad \Leftrightarrow \qquad v = \frac{E}{B}$$

When an electron is projected to the selector at the speed in (c), that means net force on it is 1 M+1 M <u>zero</u> since $F_{\rm E}$ and $F_{\rm B}$ equals and in opposite. So, the electron can pass without deflection. The radius of circular path / the rotating direction / period of the circular motion (any two) (ii) 1 M+1 M

1 M

Marks

12. (a)
$$\lambda = \frac{v}{f} = \frac{340}{3000} = \underline{0.113 \,\mathrm{m}}$$
 1 M+1 A

(b)(i)Constructive and destructive interference occurs alternatively along
$$PQ$$
.1 A(ii)Loud sound is detected at O.1 A(iii)- There is a background noise.1 A- Intensity/amplitude of sound wave from slits S_2 and S_3 have slightly difference due to the path differences.1 A

(c) $\lambda' = \frac{v}{f'} = \frac{340}{30000} = 0.0113 \,\mathrm{m} = 1.13 \,\mathrm{cm} << 10 \,\mathrm{cm}$

 $S, R-S, R=n(\frac{v}{-1})$

<u>Degree of diffraction is too small at slit S_1 since wavelength becoming shorter.</u>

(d) Path difference :
$$\Delta x = n\lambda$$

$$\sqrt{(S_2 R)^2 + (S_2 S_3)^2} - S_2 R = n(\frac{v}{f})$$

$$\sqrt{(\frac{300}{100})^2 + (\frac{40}{100})^2} - \frac{300}{100} = 5\left(\frac{340}{f}\right)$$
1 M

:
$$f = 5\left(\frac{340}{\sqrt{3^2 + 0.4^2} - 3}\right) = \underline{\underline{64000 \, \text{Hz}}}$$
 1 A

(e) Only two bright projections form S_2 and S_3 can be observed. i.e. No interference pattern is 1 A observed since wavelength of visible light is much shorter than the width of the slits.

13. (a) Both readings decrease.

1 A

(b)

Marks

13.	(b)	(ii)	$R = \frac{V}{I} = \frac{4}{0.8} = \underline{5 \Omega}$	1 M+1 A
		(iii)	Resistance increases with temperature of the resistor increases due to the heating effect of	1 4 + 1 4
			current.	I ATI A
	(c)	(i)	The ammeter is connected in series to the resistor which means the reading of ammeter is	1 4
			same as the current through the resistor.	IA
			However, the voltmeter is connected in parallel across the resistor and ammeter. Therefore,	1 4
			the reading of voltmeter is larger than the potential difference across the resistor.	1 A
			So, the measured value of the resistance, (in other words, the ratio of readings of voltmeter	1 4
			and ammeter) is larger than the actual resistance of the resistor.	ΙA
		(ii)	$V = I(R + R_A)$	
			4 = 0.8(R+2)	1 M
			$\therefore R = \underline{3\Omega}$	1 A

Paper II

1.

Section A: Astronomy and Space Science

1.	2.	3.	4.	5.	6.	7.	8.
В	С	С	В	В	В	А	А

Marks

(a)		S rises and sets everyday as seen from the Earth, and so it cannot always be observed.	1 A
(b)		The relative motion between the source (i.e. the star) and the observer on the Earth gives	1 4
		rise to the Doppler effect.	IA
(c)	(i)	From the plot, the peak values of the graph correspond to the speeds of S when it is	1 A
		moving directly towards or away from the Earth.	IA

Orbital speed of S

$$v_{\rm S} = c \left| \frac{\Delta \lambda}{\lambda} \right| = (3 \times 10^8) \times \left| \frac{0.13 \times 10^{-12}}{656.3 \times 10^{-9}} \right| = 59.42 \approx 59.4 \text{ m s}^{-1}$$
 1 M + 1 A

Orbital radius of S

$$R_{\rm S} = \frac{v_{\rm S}}{\omega_{\rm S}} = \frac{v_{\rm S}T_{\rm S}}{2\pi} = \frac{59.4 \times (60 \times 60 \times 100)}{2\pi} = 3.4047 \times 10^6 \approx 3.40 \times 10^6 \text{ m} \qquad 1 \text{ M} + 1 \text{ A}$$

(d)

By Kepler's third law of planetary motion, $T^2 = \frac{GM}{4\pi^2}R^3$

Orbital radius of P

$$R_{\rm P} = \left(\frac{GM_{\rm S}T_{\rm P}^2}{4\pi^2}\right)^{\frac{1}{3}} = \left[\frac{(6.67 \times 10^{-11}) \times (2.10 \times 10^{30}) \times (60 \times 60 \times 100)^2}{4\pi^2}\right]^{\frac{1}{3}}$$
 1 M

$$= 7.718 \times 10^9 \approx 7.72 \times 10^9 \text{ m}$$
 1 A

(e) The curve of the graph will shift upwards. 1 A

Section B: Atomic world

2.

1.	2.	3.	4.	5.	6.	7.	8.
В	В	D	А	В	В	С	В

Marks (a) (i) Feature 1: There is a threshold frequency for the incident radiation below which no photoelectron is emitted irrespective of the radiation intensity. Feature 2: The maximum kinetic energy of the photoelectrons depends only on the frequency and not the intensity of the incident radiation. Feature 3: No time delay occurs during the emission of photoelectrons. (Any Two of above / other reasonable answers) 1 M + 1 MExplanation 1: The energy carried by a photon is hf and so the electrons cannot acquire (ii) enough energy to escape from the metal surface. Explanation 2: By Einstein's photoelectric equation K.E.max = hf $-\phi$, the maximum kinetic energy depends only on the frequency of the incident photons. Explanation 3: The incident photons transfer energy to an electron once it is absorbed. (Any Two of above / other reasonable answers) 1 M + 1 MWork function is the minimum amount of energy required to remove an electron from a (b) (i) 1 A metal surface. Threshold frequency of the alloy : $f_0 = \frac{\phi}{h} = \frac{(1.8)(1.60 \times 10^{-19})}{6.63 \times 10^{-34}} = 4.34 \times 10^{14} \,\mathrm{Hz}$ (ii) 1 M Frequency of the infrared radiation : $f = \frac{c}{\lambda} = \frac{3 \times 10^8}{1000 \times 10^{-9}} = 3 \times 10^{14} \text{ Hz} < f_0$ 1 M Hence the photomultiplier tube does not work with the infrared radiation. 1 A Alternative: Energy of the infrared photon: $E = hf = \frac{hc}{\lambda} = \left[\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{1000 \times 10^{-9}}\right] \frac{1}{1.60 \times 10^{-19}} \approx 1.24 \,\mathrm{eV} < 1.8 \,\mathrm{eV}$ Hence the photomultiplier tube does not work with the infrared radiation. The more intense is the incident light, the more photons reach the photocathode. 1 A (iii) Since each photoelectron has to absorb one photoelectron before it is emitted, more photos 1 A reaching the photocathode results in more electrons to be emitted. So, Derek's claim is correct.

Section C: Energy and Use of energy

1.	2.	3.	4.	5.	6.	7.	8.
А	В	С	В	В	С	С	А

<u>Marks</u>

3.	(a)		Solar panels are portable, so they can be easily transported to remote	1 A
			areas.(Or other reasonable answers)	IA
	(b)		Maximum energy stored = $Pt = 7 \times 60 \times 60 \times 24 \times 3$	1 M
			$= \underline{1.81 \times 10^6 \text{ J}}$	1 A
	(c)		$1000 \times A \times 18\% = 45$	1 M
			$A = 0.25 \text{ m}^2$	1 A
	(d)		There is an extended period of rainy (or cloudy) weather.	1 A
	(e)	(i)	By $P_{\text{i}\text{R},\text{t}} = \frac{1}{2} \rho A v^3 = \frac{1}{2} \times 1.2 \times (\pi \times 0.8^2) \times \left(\frac{20 \times 10^3}{3600}\right)^3$	1 M
			= <u>207 W</u>	1 A
		(ii)	Air does not stop after passing through the turbine.	1 A
			The generator in the turbine is not 100% efficient.	1 A
			(Or other reasonable answers)	

Section D: Medical Physics

4.

1.	2.	3.	4.	5.	6.	7.	8.
А	А	А	D	В	А	А	D

Marks

			<u>iviai Ro</u>
(a)		The result does not tell which kidney is not working normally.	1 A
(b)	(i)	Only a few radionuclides are accumulated in the kidneys.	1 A
	(ii)	More radionuclides are accumulated in the kidneys.	1 A
		The kidney appearing whiter absorbs fewer radionuclides.	1 A
	(iii)	Most radionuclides have decayed / been removed from the body by	1 A
		biological processes.	
(c)	(i)	By $\frac{1}{t_{eff}} = \frac{1}{t_{phy}} + \frac{1}{t_{bio}}$,	
		$t_{eff} = \left(\frac{1}{t_{phy}} + \frac{1}{t_{bio}}\right)^{-1} = \left(\frac{1}{6} + \frac{1}{4}\right)^{-1} = \underline{2.4 \text{ hours}}$	1 M
		Decay constant $k = \frac{\ln 2}{t_e} = \frac{\ln 2}{2.4} = 0.289 \text{ h}^{-1}$	
		By $A = A_0 e^{-kt}$,	1 M
		$t = \frac{-1}{k} \ln \frac{A}{A_0} = \frac{-1}{0.289} \ln 0.1 = \underline{7.97 \text{ h}}$	1 A
		$\underline{\text{Or}} \qquad \text{By } A = A_0 \left(\frac{1}{2}\right)^{\frac{t}{t_c}},$	1 M
		$t = t_e \frac{\ln \frac{A}{A_0}}{\ln 0.5} = 2.4 \times \frac{\ln 0.1}{\ln 0.5} = 7.97 \text{ h}$	1 A
	(ii)	Any two of the following:	1 A + 1 A

-Emit γ radiation only

-Non-toxic / no pharmacological effect

-Decay to a stable nuclide

(Accept other reasonable answers.)