

HKDSE MOCK EXAMINATION 2024

Physics

Marking Scheme

Paper I Section A

Question No.	Key	Question No.	Key
1.	C	26.	C
2.	B	27.	C
3.	A	28.	B
4.	B	29.	A
5.	A	30.	A
6.	D	31.	D
7.	C	32.	C
8.	A	33.	D
9.	A		
10.	D		
11.	D		
12.	D		
13	C		
14.	B		
15.	B		
16.	B		
17.	A		
18.	B		
19.	A		
20.	A		
21.	B		
22.	B		
23.	A		
24.	B		
25.	D		

Paper I Section B

1. (a) By $p V=n R T$
$n=\frac{p V}{R T}=\frac{\left(10^{5}\right)\left(1200 \times 10^{-6}\right)}{(8.31)(27+273)}=\underline{\underline{0.0481 \mathrm{~mol}}}$
Total amount of gas molecules before the tap is opened = Total amount of gas molecules after the tap is opened
$\frac{\left(10^{5}\right)\left(1200 \times 10^{-6}\right)}{(8.31)(27+273)}+0=\frac{p^{\prime}\left(1200 \times 10^{-6}\right)}{(8.31)(27+273)}+\frac{p^{\prime}\left(400 \times 10^{-6}\right)}{(8.31)(127+273)}$
$\therefore p^{\prime}=\underline{\underline{7.99 \times 10^{4} P a}}$
2. (a)

$$
\begin{aligned}
& E_{\text {stored }}=\frac{1}{2} m u^{2}=\frac{1}{2}(0.5)(0.8)^{2} \\
&=\underline{\underline{0.16 \mathrm{~J}}} \\
& W=F s \quad \Rightarrow \quad 0.16=F(0.05)
\end{aligned}
$$

(b)

$$
\therefore F=\frac{0.16}{0.05}=\underline{\underline{3.2 \mathrm{~N}}}
$$

No, the maximum compression of the spring should be larger than 5 cm
It is because the total mechanical energy is larger. The height of the trolley drops when the spring is compressed. Therefore, more kinetic energy and gravitational potential energy 1 M converts to elastic potential energy at the spring.
(Another answer is also acceptable)
Yes, the maximum compression of the spring is equal to 5 cm .
Although the trolley is on an inclined runway, the speed of the trolley is also $0.8 \mathrm{~m} \mathrm{~s}^{-1}$ during the collision, which means the energy transferred from the trolley to the spring is still 1 M the same. (The height difference caused by spring's compression is neglected)
('compression less than 5 cm ' is NOT accepted)

3 (a)

$$
\begin{aligned}
F_{C}=\frac{m v^{2}}{r} & =\frac{\left(5 \times 10^{4}\right)(240)^{2}}{45 \times 10^{3}} \\
& =\underline{\underline{64000} \mathrm{~N}}
\end{aligned}
$$

(b) $\quad \tan \theta=\frac{v^{2}}{g r}=\frac{(240)^{2}}{(9.81)\left(45 \times 10^{3}\right)}$

$$
\therefore \theta=7.43^{\circ}
$$

(c)

$$
F_{L} \cos \theta=m g \quad \Rightarrow \quad F_{L}=\frac{m g}{\cos \theta}=\frac{\left(5 \times 10^{4}\right)(9.81)}{\cos 7.43^{\circ}}
$$

$$
1 \mathrm{M}
$$

$$
\therefore F_{L}=\underline{495000 \mathrm{~N}}
$$

4.

(1 mark for each correct ray)
5. (a) Take moment at O ,

$$
T(0.8) \sin 30^{\circ}=(50 \times 9.81)(0.4)+(2000)(1.2+0.4)
$$

$$
\begin{equation*}
\therefore T=\underline{\underline{8490} \mathrm{~N}} \tag{1}
\end{equation*}
$$

(b) $\left\{\begin{array}{l}R \sin \phi=T \cos 30^{\circ} \\ R \cos \phi=T \sin 30^{\circ}+50 \times 9.81+2000\end{array}\right.$

Solving above equations, we have

$$
\begin{aligned}
R & =\sqrt{\left(T \cos 30^{\circ}\right)^{2}+\left(T \sin 30^{\circ}+50 \times 9.81+2000\right)^{2}} \\
& =\sqrt{\left(8490 \cos 30^{\circ}\right)^{2}+\left(8490 \sin 30^{\circ}+50 \times 9.81+2000\right)^{2}} \\
& =\underline{\underline{9970 \mathrm{~N}}}
\end{aligned}
$$

6. (a) By conservation of mass and energy,

$$
\begin{gathered}
4 m_{p}=m_{H e}+\Delta E \\
4(1.007279 u)=m_{H e}+\frac{\left(4.28 \times 10^{-12}\right)}{\left(3 \times 10^{8}\right)^{2}}\left(\frac{1}{1.661 \times 10^{-27}}\right)
\end{gathered}
$$

$$
\therefore m_{H e}=\underline{\underline{4.000473 u}}
$$

(b) According to $P=\frac{E}{t}=\frac{N(\Delta E)}{t}$,
number of fusion occurs per second : $\frac{N}{t}=\frac{P}{\Delta E}=\frac{3.68 \times 10^{26}}{4.28 \times 10^{-12}}=8.598 \times 10^{37} \mathrm{~s}^{-1}$
Mass of the helium produced per second :
$\frac{M}{t}=\frac{N}{t} \times m_{H e}=\left(8.598 \times 10^{37}\right) \times\left(4.000473 \times 1.661 \times 10^{-27}\right)=\underline{\underline{5.71 \times 10^{11} \mathrm{~kg} \mathrm{~s}^{-1}}}$
7. (a) The impact force is equal to the rate of change of momentum during a collision .

The airbags decrease the rate of change of momentum (i.e. impact force) by increasing the time of the collision, which protect passengers from getting 1 M injured.
(b) Seat-belt / crumple zones of vehicles / other reasonable answers
8.
(a)
(b)

(Parallel and evenly spaced field lines)
1 A
(Correct direction) 1 A

(2 correct labeled forces)
(c) The polarities of the parallel plates are reversed.
9. (a)

Radio waves
1 A
(b) A cell typically uses a different set of frequencies from neighboring cells, to avoid interference within each cell.

Signal from the cell towers blocked by the construction materials such as brick, steel bar inside concrete wall, etc.

Cell signal may enter a building through windows. However, going outside should allow cell phones to receive a stronger signal from the local cell towers.
10. (a) reflection
(b) Orientation 1
(c) The wave travels slower in region B.
$\frac{v_{A}}{v_{B}}=\frac{\lambda_{A}}{\lambda_{B}} \Rightarrow \frac{v_{A}}{1}=\frac{3}{2}$
$\therefore v_{A}=\underline{\underline{1.5 \mathrm{~m} \mathrm{~s}^{-1}}}$
10. (b) (i) Electric force $=$ weight

$$
\begin{array}{rlr}
E q & =m g & 1 \mathrm{M} \\
E & =\frac{m g}{q} & \\
& =\frac{10^{-27} \times 9.81}{2 \times 1.60 \times 10^{-19}} & \\
& =3.066 \times 10^{-8} \mathrm{~N} \mathrm{C}^{-1} & \\
& =3.07 \times 10^{-8} \mathrm{~N} \mathrm{C}^{-1} & 1 \mathrm{~A}
\end{array}
$$

The electric field strength needed is about $3.07 \times 10^{-8} \mathrm{~N} \mathrm{C}^{-1}$.
(ii) $\operatorname{By} E=\frac{V}{d}$
$V=E d=3.066 \times 10^{-8} \times 0.005=1.53 \times 10^{-10} \mathrm{~V}$
$1 \mathrm{M}+1 \mathrm{~A}$
The potential difference between the plates required is about $1.53 \times 10^{-10} \mathrm{~V}$.
(iii) The EHT power supply is not suitable for the experiment
since it is unable to provide such a small voltage output.
11. (a) The electric field points upwards.

$$
E=\frac{V}{d}=\frac{4.68 \times 10^{3}}{0.5 \times 10^{-2}}=936000 \mathrm{~N} \mathrm{C}^{-1}
$$

(b) The magnetic force points downwards.

$$
F_{B}=F_{E}=q E=\left(3.2 \times 10^{-19}\right)(936000)=\underline{\underline{3.00 \times 10^{-13}} \mathrm{~N}}
$$

(c) $\quad F_{B}=q v B \sin \theta$
$3.00 \times 10^{-13}=\left(3.2 \times 10^{-19}\right) v(1.8) \sin 90^{\circ}$

$$
\therefore v=5.20 \times 10^{5} \mathrm{~m} \mathrm{~s}^{-1}
$$

(d) $\quad F_{C}=F_{B} \Rightarrow \frac{m v^{2}}{r}=q v B$

$$
\Rightarrow \quad r=\frac{m v}{B q}=\frac{\left(6.64 \times 10^{-27}\right)\left(5.2 \times 10^{5}\right)}{(2)\left(3.2 \times 10^{-19}\right)}=0.005395 \mathrm{~m}
$$

$$
\therefore d=2 r=\underline{\underline{0.0108 m}}
$$

(e) (i) There are two forces, electrostatic force F_{E} and the induced magnetic force F_{B}, which are in opposite direction acts on the electron.

$$
F_{\mathrm{E}}=F_{\mathrm{B}} \quad \Leftrightarrow \quad q E=q v B \quad \Leftrightarrow \quad v=\frac{E}{B}
$$

When an electron is projected to the selector at the speed in (c), that means net force on it is zero since $\underline{F}_{\mathrm{E}}$ and F_{B} equals and in opposite. So, the electron can pass without deflection.
(ii) The radius of circular path / the rotating direction / period of the circular motion (any two)

Marks

12. (a)

$$
\lambda=\frac{v}{f}=\frac{340}{3000}=\underline{\underline{0.113 \mathrm{~m}}}
$$

(b) (i) Constructive and destructive interference occurs alternatively along $P Q$.
(ii) Loud sound is detected at O .
(iii) - There is a background noise.

- Intensity/amplitude of sound wave from slits S_{2} and S_{3} have slightly difference due to the path differences.
(c)
$\lambda^{\prime}=\frac{v}{f^{\prime}}=\frac{340}{30000}=0.0113 \mathrm{~m}=1.13 \mathrm{~cm} \ll 10 \mathrm{~cm}$
Degree of diffraction is too small at slit S_{1} since wavelength becoming shorter.
(d) Path difference : $\quad \Delta x=n \lambda$

$$
\begin{aligned}
& S_{3} R-S_{2} R=n\left(\frac{v}{f}\right) \\
& \sqrt{\left(S_{2} R\right)^{2}+\left(S_{2} S_{3}\right)^{2}}-S_{2} R=n\left(\frac{v}{f}\right) \\
& \sqrt{\left(\frac{300}{100}\right)^{2}+\left(\frac{40}{100}\right)^{2}}-\frac{300}{100}=5\left(\frac{340}{f}\right) \\
& \therefore f=5\left(\frac{340}{\sqrt{3^{2}+0.4^{2}}-3}\right)=\underline{\underline{64000 \mathrm{~Hz}}}
\end{aligned}
$$

observed since wavelength of visible light is much shorter than the width of the slits.
13. (a) Both readings decrease.
(b)

Marks

13. (b) (ii) $R=\frac{V}{I}=\frac{4}{0.8}=\underline{\underline{5 \Omega}}$ $1 \mathrm{M}+1 \mathrm{~A}$
(iii) Resistance increases with temperature of the resistor increases due to the heating effect of current.
(c) (i) The ammeter is connected in series to the resistor which means the reading of ammeter is same as the current through the resistor.

However, the voltmeter is connected in parallel across the resistor and ammeter. Therefore, the reading of voltmeter is larger than the potential difference across the resistor.
So, the measured value of the resistance, (in other words, the ratio of readings of voltmeter and ammeter) is larger than the actual resistance of the resistor.
(ii) $V=I\left(R+R_{A}\right)$
$4=0.8(R+2)$
$\therefore R=\underline{\underline{3 \Omega}}$
$1 \mathrm{~A}+1 \mathrm{~A}$

1 A

1 A

1 A

1 A

Paper II

Section A: Astronomy and Space Science

1.	2.	3.	4.	5.	6.	7.	8.
B	C	C	B	B	B	A	A

Marks

1. (a) S rises and sets everyday as seen from the Earth, and so it cannot always be observed.
(b) The relative motion between the source (i.e. the star) and the observer on the Earth gives rise to the Doppler effect.
(c) (i) From the plot, the peak values of the graph correspond to the speeds of S when it is moving directly towards or away from the Earth.
Orbital speed of S
$v_{\mathrm{S}}=c\left|\frac{\Delta \lambda}{\lambda}\right|=\left(3 \times 10^{8}\right) \times\left|\frac{0.13 \times 10^{-12}}{656.3 \times 10^{-9}}\right|=59.42 \approx 59.4 \mathrm{~m} \mathrm{~s}^{-1}$
Orbital radius of S
$R_{\mathrm{S}}=\frac{v_{\mathrm{S}}}{\omega_{\mathrm{S}}}=\frac{v_{\mathrm{S}} T_{\mathrm{S}}}{2 \pi}=\frac{59.4 \times(60 \times 60 \times 100)}{2 \pi}=3.4047 \times 10^{6} \approx 3.40 \times 10^{6} \mathrm{~m}$
(d)

By Kepler's third law of planetary motion, $T^{2}=\frac{G M}{4 \pi^{2}} R^{3}$
Orbital radius of P
$R_{\mathrm{P}}=\left(\frac{G M_{\mathrm{S}} T_{\mathrm{P}}^{2}}{4 \pi^{2}}\right)^{\frac{1}{3}}=\left[\frac{\left(6.67 \times 10^{-11}\right) \times\left(2.10 \times 10^{30}\right) \times(60 \times 60 \times 100)^{2}}{4 \pi^{2}}\right]^{\frac{1}{3}}$
$=7.718 \times 10^{9} \approx 7.72 \times 10^{9} \mathrm{~m}$
(e) The curve of the graph will shift upwards.

Section B: Atomic world

1.	2.	3.	4.	5.	6.	7.	8.
B	B	D	A	B	B	C	B

2. (a) (i) Feature 1: There is a threshold frequency for the incident radiation below which no photoelectron is emitted irrespective of the radiation intensity.

Feature 2: The maximum kinetic energy of the photoelectrons depends only on the frequency and not the intensity of the incident radiation.
Feature 3: No time delay occurs during the emission of photoelectrons.
(Any Two of above / other reasonable answers)
(ii) Explanation 1: The energy carried by a photon is hf and so the electrons cannot acquire enough energy to escape from the metal surface.

Explanation 2: By Einstein's photoelectric equation K.E. $\max =\mathrm{hf}-\varphi$, the maximum kinetic energy depends only on the frequency of the incident photons.

Explanation 3: The incident photons transfer energy to an electron once it is absorbed.
(Any Two of above / other reasonable answers)
$1 \mathrm{M}+1 \mathrm{M}$
(b) (i) Work function is the minimum amount of energy required to remove an electron from a metal surface.
(ii) Threshold frequency of the alloy: $f_{0}=\frac{\phi}{h}=\frac{(1.8)\left(1.60 \times 10^{-19}\right)}{6.63 \times 10^{-34}}=4.34 \times 10^{14} \mathrm{~Hz}$

Frequency of the infrared radiation : $f=\frac{c}{\lambda}=\frac{3 \times 10^{8}}{1000 \times 10^{-9}}=3 \times 10^{14} \mathrm{~Hz}<f_{0} \quad 1 \mathrm{M}$
Hence the photomultiplier tube does not work with the infrared radiation.
Alternative:
Energy of the infrared photon:
$E=h f=\frac{h c}{\lambda}=\left[\frac{\left(6.63 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{1000 \times 10^{-9}}\right] \frac{1}{1.60 \times 10^{-19}} \approx 1.24 \mathrm{eV}<1.8 \mathrm{eV}$
Hence the photomultiplier tube does not work with the infrared radiation.
(iii) The more intense is the incident light, the more photons reach the photocathode.

Since each photoelectron has to absorb one photoelectron before it is emitted, more photos reaching the photocathode results in more electrons to be emitted.
So, Derek's claim is correct.

1.	2.	3.	4.	5.	6.	7.	8.
A	B	C	B	B	C	C	A

Marks

3. (a) Solar panels are portable, so they can be easily transported to remote areas.(Or other reasonable answers)
(b) Maximum energy stored $=P t=7 \times 60 \times 60 \times 24 \times 3$

$$
=\underline{\underline{1.81 \times 10^{6} \mathrm{~J}}}
$$

(c) $1000 \times A \times 18 \%=45$
$A=\underline{\underline{0.25 \mathrm{~m}^{2}}}$
(d) There is an extended period of rainy (or cloudy) weather.
(e) (i) By $\quad P_{\text {最大 }}=\frac{1}{2} \rho A v^{3}=\frac{1}{2} \times 1.2 \times\left(\pi \times 0.8^{2}\right) \times\left(\frac{20 \times 10^{3}}{3600}\right)^{3}$

$$
=\underline{\underline{207} \mathrm{~W}}
$$

(ii) Air does not stop after passing through the turbine.

The generator in the turbine is not 100% efficient.
(Or other reasonable answers)

Section D: Medical Physics

1.	2.	3.	4.	5.	6.	7.	8.
A	A	A	D	B	A	A	D

Marks

4. (a) The result does not tell which kidney is not working normally.
(b) (i) Only a few radionuclides are accumulated in the kidneys.
(ii) More radionuclides are accumulated in the kidneys.

The kidney appearing whiter absorbs fewer radionuclides.
(iii) Most radionuclides have decayed / been removed from the body by 1 A biological processes.
(c) (i) By $\frac{1}{t_{e f f}}=\frac{1}{t_{p h y}}+\frac{1}{t_{b i o}}$,

$$
t_{e f f}=\left(\frac{1}{t_{\text {phy }}}+\frac{1}{t_{\text {bio }}}\right)^{-1}=\left(\frac{1}{6}+\frac{1}{4}\right)^{-1}=\underline{\underline{2.4 ~ h o u r s}}
$$

Decay constant $k=\frac{\ln 2}{t_{e}}=\frac{\ln 2}{2.4}=0.289 \mathrm{~h}^{-1}$
By $A=A_{0} \mathrm{e}^{-k t}$,

$$
t=\frac{-1}{k} \ln \frac{A}{A_{0}}=\frac{-1}{0.289} \ln 0.1=\underline{\underline{7.97 \mathrm{~h}}}
$$

Or $\quad \mathrm{By} A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{t_{e}}}$,

$$
t=t_{e} \frac{\ln \frac{A}{A_{0}}}{\ln 0.5}=2.4 \times \frac{\ln 0.1}{\ln 0.5}=7.97 \mathrm{~h}
$$

(ii) Any two of the following:
-Emit γ radiation only
-Non-toxic / no pharmacological effect
-Decay to a stable nuclide
(Accept other reasonable answers.)

